
Misterio77 / nix-starter-configs Public

Simple and documented config templates to help you get started with NixOS + home-manager + flakes. All the
boilerplate you need!

198
stars

6
forks

View code

Nix Starter Config
This repo contains a few a simple nix flake templates for getting started with
NixOS + home-manager.

What this provides
Minimal version:

NixOS configuration on nixos/configuration.nix , accessible via
 nixos-rebuild --

flake .

Home-manager configuration on home-manager/home.nix , accessible via
 home-manager -
-flake .

Standard version:
Basic boilerplate for adding custom packages (under pkgs) and overlays
(under overlay).
Accessible on your system, home config, as well as nix build .#package-name .

Boilerplate for custom NixOS (modules/nixos) and home-manager
(modules/home-
manager) modules

NixOS and home-manager configurations from minimal, and they should
also use your
overlays and custom packages right out of the box.

Getting started

Star Notifications

Code Issues 2 Pull requests Actions Projects Security Insights

main

57

README.md

https://github.com/Misterio77
https://github.com/Misterio77/nix-starter-configs
https://github.com/Misterio77/nix-starter-configs/stargazers
https://github.com/Misterio77/nix-starter-configs/network/members
https://github.com/Misterio77/nix-starter-configs/blob/main/minimal
https://github.com/Misterio77/nix-starter-configs/blob/main/standard
https://github.com/login?return_to=%2FMisterio77%2Fnix-starter-configs
https://github.com/login?return_to=%2FMisterio77%2Fnix-starter-configs
https://github.com/Misterio77/nix-starter-configs
https://github.com/Misterio77/nix-starter-configs/issues
https://github.com/Misterio77/nix-starter-configs/pulls
https://github.com/Misterio77/nix-starter-configs/actions
https://github.com/Misterio77/nix-starter-configs/projects
https://github.com/Misterio77/nix-starter-configs/security
https://github.com/Misterio77/nix-starter-configs/pulse
https://github.com/Misterio77/nix-starter-configs/commits/main

Assuming you have a basic NixOS booted up (either live or installed, anything
works). Here's a link to
the latest NixOS downloads, just for
you.

Alternatively, you can totally use nix and home-manager on your existing
distro (or even on
Darwin). Install nix
and follow along (just ignore the nixos-* commands).

What template to chose?

If this is your first trying flakes, or you're attempting to migrate your
(simple) config to it; you should
use the minimal version.

If you're here looking for inspiration/tips/good practices (and you already use
flakes), or you're
migrating a config that already has overlays and custom
packages; try the standard version.

I like your funny words, magic man

Not sure what this all means?

Take a look at the learn hub on the NixOS
website (scroll down to guides, the manuals, and
the other
awesome learning resources).

Learning the basics of what Nix (the package manager) is, how the Nix language
works, and a bit of
NixOS basics should get you up and running. Don't worry if
it seems a little confusing at first. Get
confortable with the basic concepts
and come back here to get your feet wet, it's the best way to
learn!

The repo

Install git, if you haven't already.

Create a repository for your config, for example:

Make sure you're running Nix 2.4+, and opt into the experimental flakes and nix-command

features:

Get the template:

cd ~/Documents

git init nix-config

cd nix-config

Should be 2.4+

nix --version

export NIX_CONFIG="experimental-features = nix-command flakes"

https://nixos.org/download#download-nixos
https://nixos.org/download.html#nix
https://nixos.org/learn.html
https://nixos.wiki/wiki/git

If you want to use NixOS: add stuff you currently have on /etc/nixos/ to
 nixos (usually
configuration.nix and hardware-configuration.nix , when
you're starting out).

The included file has some options you might want, specially if you don't
have a
configuration ready. Make sure you have generated your own
 hardware-

configuration.nix ; if not, just mount your partitions to
 /mnt and run: nixos-generate-
config --root /mnt .

If you want to use home-manager: add your stuff from ~/.config/nixpkgs
to home-manager

(probably home.nix).
The included file is also a good starting point if you don't have a config
yet.

Take a look at flake.nix , making sure to fill out anything marked with
FIXME (required) or

TODO (usually tips or optional stuff you might want)

git add and git push your changes! Or at least copy them somewhere if
you're on a live
medium.

Usage

Run sudo nixos-rebuild switch --flake .#hostname to apply your system
configuration.

If you're still on a live installation medium, run nixos-install --flake .#hostname
instead, and reboot.

Run home-manager switch --flake .#username@hostname to apply your home
configuration.
If you don't have home-manager installed, try nix shell nixpkgs#home-manager .

And that's it, really! You're ready to have fun with your configurations using
the latest and greatest
nix3 flake-enabled command UX.

What next?

Adding more hosts or users

You can organize them by hostname and username on nixos and home-manager
directories, be
sure to also add them to flake.nix .

You can take a look at my (beware, here be reproductible dragons)
configuration repo for ideas.

For minimal version

nix flake init -t github:misterio77/nix-starter-config#minimal

For standard version

nix flake init -t github:misterio77/nix-starter-config#standard

https://github.com/misterio77/nix-config

NixOS makes it easy to share common configuration between hosts (you might want
to create a
common directory for these), while keeping everything in sync.
home-manager can help you sync
your environment (from editor to WM and
everything in between) anywhere you use it. Have fun!

User password and secrets

You have basically two ways of setting up default passwords:

By default, you'll be prompted for a root password when installing with
 nixos-install . After

you reboot, be sure to add a password to your own
account and lock root using sudo passwd -l
root .

Alternatively, you can specify initialPassword for your user. This will
give your account a

default password, be sure to change it after rebooting!
If you do, you should pass --no-root-
passwd to nixos-install , to skip
setting a password on the root account.

If you don't want to set your password imperatively, you can also use
 passwordFile for safely and
declaratively setting a password from a file
outside the nix store.

There's also more advanced options for secret
management,
including some that can include them
(encrypted) into your config repo and/or
nix store, be sure to check them out if you're interested.

Dotfile management with home-manager

Besides just adding packages to your environment, home-manager can also manage
your dotfiles. I
strongly recommend you do, it's awesome!

For full nix goodness, check out the home-manager options with man home-configuration.nix .

Using them, you'll be able to fully configure any
program with nix syntax and its powerful
abstractions.

Alternatively, if you're still not ready to rewrite all your configs to nix
syntax, there's home-manager
options (such as xdg.configFile) for including
files from your config repository into your usual dot
directories. Add your
existing dotfiles to this repo and try it out!

Try opt-in persistance

You might have noticed that there's impurity in your NixOS system, in the form
of configuration files
and other cruft your system generates when running. What
if you change them in a whim to get
something working and forget about it?
Boom, your system is not fully reproductible anymore.

You can instead fully delete your / and /home on every boot! Nix is okay
with a empty root on boot
(all you need is /boot and /nix), and will
happily reapply your configurations.

There's two main approaches to this: mount a tmpfs (RAM disk) to / , or
(using a filesystem such
as btrfs or zfs) mount a blank snapshot and reset it
on boot.

https://nixos.wiki/wiki/Comparison_of_secret_managing_schemes

For stuff that can't be managed through nix (such as games downloaded from
steam, or logs), use
impermanence
for mounting stuff you to keep to a separate partition/volume (such as
 /nix/persist
or /persist). This makes everything vanish by default, and you
can keep track of what you

specifically asked to be kept.

Here's some awesome blog posts about it:

Erase your darlings

Encrypted BTRFS with Opt-In State on
NixOS

NixOS: tmpfs as root and
tmpfs as home

Adding custom packages

Something you want to use that's not in nixpkgs yet? You can easily build and
iterate on a derivation
(package) from this very repository.

Create a folder with the desired name inside pkgs , and add a default.nix
file containing a
derivation. Be sure to also callPackage them on
 pkgs/default.nix .

You'll be able to refer to that package from anywhere on your
home-manager/nixos configurations,
build them with nix build .#package-name ,
or bring them into your shell with nix shell
.#package-name .

See the manual for some tips on how
to package stuff.

Adding overlays

Found some outdated package on nixpkgs you need the latest version of? Perhaps
you want to apply
a patch to fix a behaviour you don't like? Nix makes it easy
and manageble with overlays!

Use the overlay/default.nix file for this.

If you're creating patches, you can keep them on the overlay folder as well.

See the wiki article to see how it all
works.

Adding your own modules

Got some configurations you want to create an abstraction of? Modules are the
answer. These
awesome files can expose options and implement configurations
based on how the options are set.

Create a file for them on either modules/nixos or modules/home-manager . Be
sure to also add
them to the listing at modules/nixos/default.nix or
 modules/home-manager/default.nix .

See the wiki article to learn more about
them.

https://github.com/nix-community/impermanence
https://grahamc.com/blog/erase-your-darlings
https://mt-caret.github.io/blog/posts/2020-06-29-optin-state.html
https://elis.nu/blog/2020/05/nixos-tmpfs-as-root/
https://elis.nu/blog/2020/06/nixos-tmpfs-as-home/
https://nixos.org/manual/nixpkgs/stable/
https://nixos.wiki/wiki/Overlays
https://nixos.wiki/wiki/Module

Troubleshooting / FAQ
Please let me know
any questions or issues you face with these templates, so I can add more info
here!

I'm trying to set nixpkgs.config options (e.g. allowUnfree), but
they won't work!

We instantiate nixpkgs and pass it to NixOS, to make the flake a bit simpler
and ensure both configs
have the same nixpkgs instance, this has the drawback
of breaking nixpkgs configuration through in
your NixOS config files.

This is a design choice I made based on the homeManagerConfiguration
interface, that requires a
pkgs instance anyway. If you prefer to set them
modularly, you'll have to remove the pkgs

argument. If you use overlays,
you'll have to pass them into your configuration (through specialArgs)
or set
 nixpkgs.overlays right on the flake; in this case, you might prefer to use
home-manager as a
NixOS
module
and set home-manager.useGlobalPkgs = true .

Nix says my repo files don't exist, even though they do!

Nix flakes only see files that git is currently tracked, so just git add .
and you should be good to
go. Files on .gitignore , of course, are invisible
to nix - this is to guarantee your build won't depend
on anything that is not
on your repo.

Contributors 2

Languages

Nix 100.0%

https://github.com/Misterio77/nix-starter-config/issues
https://nix-community.github.io/home-manager/index.html#sec-flakes-nixos-module
https://github.com/Misterio77/nix-starter-configs/graphs/contributors
https://github.com/Misterio77/nix-starter-configs/search?l=nix

